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NOMENCLATURE 
complementary error function 

m 

1 
acceleration of gravity. 
local Grashof number = @.x’AT/v 

local heat-transfer coefficient: 
complementary error function integrated n 

times=Ti”-’ erfc (.I) da. i” erfcfq) = erfc (tf). 
‘I 

thermal conductivity oi fluid 
local Nusselt number = hx/k 

Prandtl number = v/a : 
time : 
temperature; 
temperature of wall 
temperature at infinity (also. initial temperature 
of fluid). 
= T/x*- 
component of velocity in x-direction : 
= ~/(V@~~~)~' 
= up3 = a+/ac- 
component of velocity in y-direction ; 

= Y/(vgp LlT)f : 

vertical distance from bottom of plate. 
= x(gfl AT,‘?)+. 

horizontal distance from plate 
= y(gp AT/v’)“. 

Greek symbols 
Lx. thermal diffusivity of fluid 
Pi thermal expansion coefficient. 
AT, = T, - T,. 

L = y/ZJ(vt). 

7. 
e. 
V. 

;. 
$. 

i= y/2 J(at) = Plq~ 

= (T- T&T, - T,): 
kinematic viscosity of fluid : 
= t(gflAT)I:v? ; 
function introduced in equation (6). 
stream function. 

INTBODUCTION 

THE PROBLEM of unsteady Iaminar free convection on a 
vertical plate has been studied extensively [l]. For a plate 
of semi-infinite length, Sugawara and Michiyoshi [2] 
treated a step-function change in a wall temperature by 
using a method of successive approximations. The same 
problem was studied by Siegel [3]. and Hellums and 
Churchill [4,5]. The former employed KarmBnPohlhausen 
method and the latter finite-difference method. As pointed 
out in the above investigations, heat transfer at an early 

stage is by pure conduction : the convective heat transfer in 
the ordinary sense has not started, and the temperature and 
velocity fields for the semi-infinite plate are the same as for 
the doubly infinite plate (i.e. plate without leading-edge). 
Goldstein and Briggs [6] made an approximate estimate 
of the time required to terminate the conductive regime. 
i.e. the time when the effect of leading-edge appeared. But 
they made rather a drastic assumption that the leading-edge 
effect was propagated according to the velocity obtained 
from the solution of the doubly infinite plate. Such being 
the case, the limit of pure conduction has not been clear up 
to date. 

As Ostrach [7] has noted implicitly, the limit of pure 
conduction is closely related to the singularity of the basic 
equations. In this note. the limit of pure conduction is 
determined without any assumption in terms of Stewart- 
son’s [S, 9] singularity which appeared in the boundary- 
layer equation for flow over the semi-infinite plate impul- 
sively started from rest. 

If31 
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WAVE-FRONT OF LEADING-EDGE 

DISTURBANCE 

We treat the case when the temperature of a semi-infinite 
plate immersed in fluid at temperature T, is raised suddenly 

up to a higher and constant value T,. The boundary-layer 

equations for unsteady laminar free convection are. in 

dimensionless form 

(3) 

The relevant boundary and initial conditions are 

Li=V=O. O=l atY=O 

u-0. Q-10 as Y+ z 
(4) 

U=O. O=O atX =0 

u=l;=O. O=O atr=O 
1 

Introduce a stream function $ defined by 

u = (‘ti.;ar: V= - a*i?X. (5) 

It was shown by Hellums and Churchill [5] that the number 

of independent variables could be reduced so that U/X*. 

VX* and B depend only on r/X* and r/X*. Takivg this into 

consideration. we introduce a function @T*. 0. 

# = 2(&) Xf +(T*. 5) (6) 

where 

T* = r/X*. < = ~‘/Z,,/(vt) = yI2(&) [ = (YIX*)j’2T**]. (7) 

From (5) and (6). components of velocity become 

U = X*Z&a[. V= X-*T**(T*&#!dT* - 4). (8) 

Substituting (8) into (1) and (2). one obtains 

(9) 

The boundary conditions become 

f#~ = 1?@2( = 0. 0 = I at i = 0 
(11) 

s&a; ---t 0. O-0 as< ---* 7. 

The character of equations (9) and (IO) may be clarified 

from the discussion similar to that given by Stewartson 

[8. 91. Both (9) and (10) are parabolic partial differential 
equations of a heat-conducting type. with a coefficient of 

conductivity 7’* (2 - T* U*). where 

U"(T*.;) = ?c#d13[ = U./X*. (12) 

Since U*(7’*, i) has a maximum at some value of <. we 

express this as U&_(T*). If 2 - T*U&,(T*) >a. the 

coefficient of conductivity is positive. and there is no 

difficulty. However. if 2 - T*U&,(T*) < 0. it changes 

sign twice through the boundary-layer. and equations (9) 

and (10) become of singular character. A critical value of 

T* at which singularity appears first is determined by the 

following equation. 

T*U&,,(T*) = 2. (13) 

11 we express the solution 01 (13) as T,t,, (= const.), it may 
be said that equations (9) and (10) are regular for T* i 7% 

and singular for T* > T&,. 
The mathematical singularity at T* = T&, means wave- 

front of disturbance propagating upward from the leading- 
edge of semi-infinite vertical plate, i.e. rhe motion of the 

wave-front is described by 

:,X* = T,t,,, ( = const.). (14) 

By making use of (14). equation f 13) will be derived from the 

the physical point of view as follows. Since the leading-edge 
disturbance travels with a maximum velocity of u. i.e. u,,,. 

the following relation holds at the wave-front. 

d*.:dt = u,&. I). 

It becomes. in dimensionless form 

dXidr = (I&X, r). (15) 

On the other hand. equation (14) becomes, by differentiation 

dXldr = 2X?. 

Substituting the above equation into (15) and using the 

definition of T*, one obtains equation (13) at the wave- 

front. Now it is clear that if 5 < Tfri, X* (or T* < TX,,), the 

fluid is unaware of the existence of the leading-edge and the 

velocity and temperature fields are the same as those ION 

the doubly infinite plate. 

LIMIT OF PURE CONDUCTION 

As mentioned above. the solutions of (9) and (10) coincide 

with those of the doubly infinite plate for T* < TX,,. which 

are given in [lo] or [ 111 as follows’ 

0 = erfc (q). U* = T*F(q) (16) 
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where 

i 

21)ierfc(rl) for Pr = I 
Qrl) = 4 

i _Pr [i* erfc (7) - i2 erfc (q/Prf)] For 1’1. f 

Since equation (16) should hold up to the limiting case 

(T* + %,). one obtains the following relation at T* = 

%,. 

u:,,cT*) = T*F,,, 

where F,,, denotes maximum value of F(n) and is a function 

of the Prandtl number. Substituting (17) into (13) the 

critical time Trri, can be obtained as 

T,:i, = (2/F,,,)+. (18) 

For a fixed point whose distance from the leading-edge is 

equal to X. the solutions of the doubly infinite plate, i.e. of 

the pure conduction hold up to the time r = Tr,,X*. The 

values of TX,, are given in Table 1 against the various Prandtl 

numbers as compared with the results of the earlier investi- 

gators. It may be pointed out that the approximate estimate 

by Goldstein and Briggs [6] agrees excellently with the 

exact value presented here. 

Table 1. Values qfcritical time I& 

Pr Nanbu Ref. [6] Ref. [3] Ref. [5] 
-. ___ ~~_ __ -___ 

0,001 1.496 1.51 2.21 _ 
0.01 I.639 I ,66 2.21 _ 
0.1 2.03 1 2.07 2.28 _ 

072 2.904 2.68 _~ 
0.733 2.916 2.69 24 
1 3,143 3.21 2.85 -- 
2 3,787 3.37 - 

10 6,423 6.54 6.10 
100 16.39 16.6 18.1 

1000 47.32 57.0 

Local heat-transfer coefficient h in pure conduction regime 

is, from (16) 

h = k/(nat)*. 119) 

After introducing local Nusselt number Nu, and local 

Grashof number Gr,, equation (19) is rewritten as 

Nu, Pr + 
_= - 

0 Gr,+ n 
T*-+. (20) 

Table 2 compares the steady state heat-transfer coefficient 

taken from Ostrach 1121 with the value of the heat-transfer 

coefficient at the end of the pure conduction regime, i.e. at 

T* = TXi, for various Prandtl numbers, The difference 

between two is shown as “overshoot”. Since the values at 

the end of pure conduction are smaller than those of steady 

state. the heat-transfer coefficient should experience a 

minimum before transition to steady state. This is confirmed 

strictly for the first time. 
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